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ABSTRACT

Final Report: Implementing Material Surfaces with an Adhesive Switch

Report Title

The work focuses on implementing material surfaces that present temporal adhesive cues. We are exploring conformational changes in 
surface-immobilized oligonucleotides to promote an “off-on” switch in adhesion events on the surface of colloidal particles. The overall 
objective is to optimize oligonucleotide characteristics (e.g. base length, modified nucleotide content, etc.) for chemically-robust 
macromolecules in order to tailor both the timing as well as extent of reversible adhesion between material surfaces. The long term goal is to 
design materials with unprecedented abilities to dynamically direct interactions with its surrounding environment.
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Fig. 1. Surface density of 1° LNA:LNA duplexes remaining 
following 24 h incubation (followed by routine washes) in the 
absence (Buffer) or presence of secondary DNA (NC14, 
B15) or LNA (L3B15) target strands at room temperature. 
Taken from Eze & Milam, Soft Matter 2013 9 (8) 2403-2411. 

for example, initially camouflage, then reveal a material for a particular time-sensitive function. 
Summary of Most Important Results from Published and Unpublished Work 

(A) Assessing DNA-LNA mixmer sequences for robust, reversible colloidal assembly schemes 
Publication: N. Eze, V.T. Milam, “Exploring locked nucleic acids as a bio-inspired materials assembly and 
disassembly tool,” Soft Matter 2013 9 (8) 2403-2411. (Featured on Cover) This publication demonstrates 
the ability to incorporate modified oligonucleotides called locked nucleic acids (LNA) into sequences to (i) 
promote recognition-based colloidal assembly and (ii) recognition-based displacement events to mediate 
colloidal disassembly at 37 °C following a 24 h incubation with secondary target sequences. Sequences 
are provided in Table 1 (see Appendix A) 
 
♦ Flow Cytometry Analysis of Competitive Displacement Activity  
Fig. 1 shows a quantitative comparison of primary mismatched, L3M11-, L3M13- and L3M15-based 
duplexes remaining hybridized following incubation with various secondary targets for 24 h at room 
temperature. With the addition of buffer only or noncomplementary NC14 secondary target, LNA:LNA 
duplexes retain nearly the same duplex densities indicating negligible thermal dissociation occurs at room 
temperature. Following incubation with complementary secondary B15 or L3B15 targets, however, the 
duplex densities drop for all shorter mismatched cases. This decrease in the primary duplex density is 
attributed to competitive displacement of the original hybridization partner by the complementary 
secondary target. Moreover, as the length of the primary target increases, more primary duplexes 
remained hybridized in the presence of either B15 or L3B15 secondary targets. Thus, despite similar 
initial primary duplex densities for the L3M11, L3M13, and L3M15 cases (see Buffer only case in Fig. 1), 
the mismatched LNA targets do exhibit a sequence length-dependence with respect to displacement 
activity by both B15 and L3B15. One can infer from these trends in displacement activity that increasing 
the total number of base-pair matches 
results in stronger primary duplexes that are 
less likely to allow for partner exchange. 
Moreover, while quantifying primary 
hybridization activity is one indicator of 
relative affinity between oligonucleotide 
partner strands, differences in 
competitive displacement activity serve 
as a better affinity indicator. While 
significant displacement activity by L3B15 is 
evident for L3M11 (reduced from 28,150 to 
10,920 oligos/μm2), and L3M13 (reduced 
from 27,400 to 14,610 oligos/μm2) primary 
targets, the weaker L3M9 (reduced from 390 
to 50 oligos/μm2) holds better promise for 
promoting oligonucleotide-mediated 
assembly as well as complete displacement-
based disassembly of colloidal satellites. To 
validate this sequence choice, competitive 
displacement activity for select, closely 
related primary targets (L3M9 and L3B9) 
were also carried out under conditions mimicking disassembly experiments (i.e., 37 °C conditions; diluted 
probe coupling step). Under these conditions, the L3B9 and L3M9 targets exhibited a 22% and 35% 
reduction in duplex density, respectively (data not shown, but provided in above publication). 
 

• Assembly via Primary Hybridization Events and Disassembly via Competitive Displacement Events 
For assembly and disassembly studies, the immobilized probe concentration was intentionally diluted in 
order to reduce the number of duplex bridges between colloidal particles in a “colloidal satellite” assembly 
and enable subsequent disassembly via competitive hybridization (or displacement) events once a 
secondary target is introduced. Flow cytometry results (not shown) indicated that the initial primary duplex 
density was reduced ~3-4-fold for L3A20:L3M9 and L3A20:B9-based duplexes. Competitive displacement 
of these primary hybridization partners was ~95%. Fig. 2 and Fig. 3 shows confocal micrographs of 
L3A20:iL3B9 and L3A20:iL3M9-linked colloidal satellite assemblies formed at room temperature and then 
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Fig. 4. Primary duplex density remaining between L3A20 
LNA probes and various DNA (B9) and LNA (L3M9, L3B9) 
targets, following incubation for 24 h at room temperature, 
37 °C, and 37 °C with DNase I (1 U/mL). Taken from Eze & 
Milam, Soft Matter 2013 9 (8) 2403-2411. 

 
Fig. 5. In situ measurements of primary duplex formation 
between DNA(A20)-functionalized microspheres and 
fluorescently-labeled B15 (solid squares), M15 (solid 
triangles), M13 (open circles), M11 (solid circles), or NC14 
(open triangles) DNA primary targets. Error bars indicating 
standard deviation for both surface density and time values 
are shown. Taken from Hardin. & Milam, 
Biomacromolecules 2013 14  (4) 986-992. 

demonstrate that superior thermal and 
nuclease resistance is conferred on 
oligonucleotides by substituting ~one-third 
of DNA nucleotides with LNA nucleotides in 
hybridization segments – an important 
consideration in implementing chemically 
robust macromolecular players.  

 

(B) Measuring in situ hybridization activity of 
immobilized DNA strands on colloidal 
carriers 
Publication: J.O. Hardin, V.T. Milam, “Measuring 
in situ primary and competitive DNA 
hybridization activity on microspheres,” 
Biomacromolecules 2013 14 (4) 986-992. This 
publication demonstrates the ability to use flow 
cytometry to perform high throughput in situ 
measurements of primary duplex formation and 
competitive displacement activity on 
microspheres. The pure DNA targets are 
identical in base content to similarly-named 
LNA-DNA “mixmer” targets in Table 1 (see 
Appendix A). The experimental approach from 
these recently published studies have been 
extended to include LNA nucleotides in either 
the probe strands immobilized on microsphere 
surfaces, primary targets, and/or competitive 
target sequences for select case studies (see 
Section (G)). Although flow cytometry is 
routinely used by research groups to quantify 
fluorescently-tagged duplexes on microspheres 
following conventional wash steps, to our 
knowledge our report is the first to 
demonstrate adapting this high throughput 
approach to quantify target binding and 
displacement events as they occur on 
microspheres by excluding intermittent 
wash steps.  
• Quantifying in situ 1° hybridization events 
To investigate in situ primary duplex formation 
as it occurs between immobilized probes and 
various targets, suspensions of DNA-
functionalized microspheres were interrogated 
with flow cytometry immediately following 
introduction to various fluorescently-labeled primary targets. Importantly, these in situ measurements 
were conducted in the absence of any wash steps normally used to remove unassociated or weakly 
bound target from the vicinity of the microsphere. As shown in Fig. 5, all five target cases reach a plateau 
value in duplex density within 30 min of target introduction indicating that equilibrium was reached within 
the experimental timeframe. There are, however, negligible differences in the fluorescence intensity of 
DNA-functionalized microspheres alone and in the presence of noncomplementary NC14 strands 
indicating that nonspecific target adsorption to the microsphere surface as well as association between 
noncomplementary targets and immobilized probes are minimal, even in the absence of any wash steps. 
The nearly identical hybridization rate constants (~0.03-0.04 s-1) for the various targets indicates 
that the primary hybridization rates are independent of sequence length and fidelity. Moreover, the 
extent of in situ hybridization is nearly identical for all the mismatched strands, but greater for the 
perfectly matched strands.  
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satellite nanoparticles. To prepare DNA-loaded satellite assemblies, uniform gelatin microspheres (GMS) 
were fabricated using microfluidics, loaded with 15 base-long secondary DNA targets, capped with a 
polyelectrolyte bilayer, and finally coated with a monolayer of polystyrene microspheres functionalized 
with short primary duplexes. Once warmed to 37° C, satellite assemblies remain intact while secondary 
DNA targets are released from the gelatin template to then competitively displace the shorter, original 
hybridization partners on satellite microspheres. This approach involving the encapsulation of 
hybridization partners inside colloidal matrices shows promise of our capabilities to implement a 
multi-particle colloidal carrier (e.g. colloidal satellite assembly) that provides its own the release 
agent (i.e. secondary oligonucleotide targets that are temporarily encapsulated inside colloidal 
matrix, but later released to competitively displace primary duplex partners) in future work.         

 
(D) Comparing RNA and DNA as secondary targets 
Publication: B.A. Baker, G. Mahmoudabadi, V.T. Milam, “Using Double-Stranded DNA Probes to Promote 
Specificity in Target Capture,” Colloids and Surfaces B: Biointerfaces 2013 102 884-890. In this study we 
compare the competitive displacement capabilities of 15 base-long, closely related (e.g. differences only 
in one base), but still distinct RNA (R15) or DNA (perfectly-matched T15; T15x3 with near end mismatch; 
T15m with center mismatch) sequences (see Table 2 in Appendix A). The primary hybridization partners 
was either 13 base-long perfectly matched duplexes (3P:T13) or 15 base-long, mismatched duplexes 
(5P:T15m) derived from the Salmonella genome (unlike other studies in Subsections (A)-(C) above 
involving “designer” sequences with no genomic relevance). The displacement of a labeled primary 
hybridization partner by an unlabeled competitive hybridization partner was measured on microspheres 
using flow cytometry. Any thermal dissociation was accounted for using control experiments involving the 
absence of complementary secondary target. Highlights of the study are shown in Fig. 8. Intriguingly, the 
overall trends as well as the total fraction of primary partner strands ultimately displaced for the 5P:T15m 
case (see Figure 8(a)) remain similar throughout the timeframe of the experiment for all targets 
considered. In contrast, the extent of displacement in the profiles for the 3P:T13 case (see Figure 8(b)) 
occurs in descending order for R15, T15, T15x3, and T15m targets. From these results there is a clear 
distinction in the timing and extent of competitive displacement activity for the 3P:T13 and 5P:T15m-
based primary duplexes. This ability to “tune” the timing and extent of competitive hybridization activity 
shows promise towards our ultimate goal of programming the responsiveness of “stealth coatings” on 
material surfaces using oligonucleotides. While DNA and RNA are not as chemically robust as LNA, our 
past and ongoing work indicates similar abilities to tune the responsiveness of LNA-based sequences. 

   
Fig. 8 Fraction of reporter strands displaced as a function of incubation time with various RNA and DNA targets from 
(a) 5P:T15m and (b) 3P:T13 dsProbes. Each data point represents the average of three separate measurements 
with error bars corresponding to the standard deviation about this average. 
 

(E) Employing competitive displacement events in materials systems  
Publication: B.A. Baker, G. Mahmoudabadi, V.T. Milam ”Strand displacement in DNA-based materials 
systems” Soft Matter 2013 9 (47) 11160-11172. (Highlighted as 2013 “Hot Paper” by Soft Matter). While 
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Fig. 10 Measurements of the in situ release of 9 base-
long LNA targets (L3B9F) from DNA A20-
functionalized microspheres by unlabeled (“U”) 15 
base-long LNA (L3B15U) or DNA (B15U) secondary 
targets. Controls with the noncomplementary DNA 
target (NC12U) were used to determine the extent of 
any duplex dissociation.

 
Fig. 9 In situ measurements of binding activity between 
DNA-functionalized microspheres and soluble, 
fluorescently labeled noncomplementary DNA targets 
(NC14); complementary DNA (B9, B15); or LNA (L3M9, 
L3B9, L3B15) targets. Dotted lines represent curve fits 
to the following equation: σ = σ∞(1 - exp(-k1t)) where σ 
is the time-dependent duplex density, σ∞ corresponds 
to the σ value at the 30 min time point, k1 is the duplex 
association rate constant, and t is time. Error bars 
indicating standard deviation for duplex density and 
time values for the average of three suspension 
samples are shown.  

primary hybridization between single-stranded DNA oligonucleotides has been well-studied in the 
literature and successfully employed in numerous materials assembly schemes, this review article 
highlights a related, but distinct activity involving the exchange of one partner strand for a second, often 
strong binding partner in a duplex. The review article highlights displacement-based strategies in 
scenarios ranging from DNA lattices with expandable dimensions to colloidal assemblies in which 
particles can rearrange or redisperse.  
 
(F) Investigating how the spatial location of the “recognition domain” in a secondary target affects 
displacement kinetics. 
Publication: B.A. Baker, G. Mahmoudabadi, V.T. 
Milam ”Hybridization kinetics between immobilized 
double-stranded DNA probes and targets 
containing embedded recognition segments,” 
Nucleic Acids Research 2011 39 (15)  e99. The 
time-dependent strand displacement activity of 
several targets with double-stranded DNA probes 
(dsProbes) of varying affinity was studied using 
sequences shown in Table 3 (see Appendix A). 
Here, the relative affinity of various dsProbes is 
altered through choices in hybridization length 
(11-15 bases) and the selective inclusion of center 
mismatches in the duplexes. While the dsProbes 
are immobilized on microspheres, the soluble, 15 
base-long complementary sequence is presented 
either alone as a short target strand or as a 
recognition segment embedded within a longer 
target strand. Compared to the short target, strand 
displacement activity of the longer targets is 
slower, but still successful. Additionally, the longer 
targets exhibit modest differences in the observed 
displacement rates, depending on the location of 
recognition segment within the long target. 
Overall, this study demonstrates that the kinetics 
of strand displacement activity can be tuned 
through dsProbe sequence design parameters 
and is only modestly affected by the location of 
the complementary segment within a longer target 
strand. 
 
(G) Measuring in situ primary hybridization 
activity and displacement activity between 
DNA probes and LNA-DNA mixmer targets.  
Representative results shown in Fig. 9 and Fig. 
10 from recent unpublished studies demonstrate 
our abilities to quantify binding and release events 
as they occur between DNA-functionalized 
microspheres and various DNA and LNA-based 
targets to directly measure rate constants as well 
as the extent of oligonucleotide binding activity on 
microspheres using sequences shown in Table 1 
(see Appendix). Notably, all data sets include a 
noncomplementary target sequence to assess any 
nonspecific binding of target to probe-
functionalized microspheres (shown in Fig. 9) as 
well as any spontaneous probe:target duplex 
dissociation (and thereby convert release profiles 
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shown in Fig. 10 into displacement profiles not shown). These noncomplementary target controls are 
essential to include in our kinetic analysis of hybridization and displacement activity. Nearly identical 
values for the primary duplex association rate constants, k1, of ~10-2 s-1  are derived from fits of the duplex 
formation profiles shown in Fig. 9 and demonstrate that the primary hybridization rate constants between 
DNA and various DNA and LNA-DNA targets are independent of LNA content and sequence base length 
for the sequences studied. Using the noncomplementary target case to account for any thermal 
dissociation, these release profiles in Fig. 9 were converted into displacement profiles (not shown for this 
data set, but see Fig. 6 for examples of displacement profiles). Similar observed displacement rate 
constants, kd, (0.03 s-1) derived from displacement profiles for DNA-functionalized microspheres indicate 
similar displacement capabilities of a 9-base-long LNA-DNA mixmer primary target by either 15 base-long 
DNA or LNA-based competitive targets.  
 
Two manuscripts are currently in preparation to report these most recent results. 
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Appendix A 
 
Table 1. List of oligonucleotide function, nomenclature, and sequence. Note: For simplicity the term “LNA” is used 
throughout this report to refer to an LNA-DNA mixmer sequence. 

Function  Nomenclature  
immobilized DNA probe A20 =       3'–TAGTCGGCGTTAGGTTTTTT–5'  
immobilized LNA probe L3A20 =    3'–TALGTCLGGCLGTTLAGGLTTTTTT–5'  
soluble DNA or LNA 1° targets B9 =         5'–ATCAGCCGC–3'  
 L3B9 =      5'–ATLCAGLCCGLC–3'  
 B11 =         3´-AAC GCC GAC TA-5  
 B13 =                             3´-CT AAC GCC GAC TA-5´  
 B15 =                             3´-A CCT AAC GCC GAC TA-5  

 

M9 =         5'–ATCACCCGC –3' 
M11 =       5'–ATCAGGCGCAA–3' 
M13 =       5'–ATCAGCGGCAATC–3' 
M15 =       5'–ATCAGCCCCAATCCA–3' 

 

 L3M9 =     5'–ATLCACLCCGLC–3'  
 L3M11 =    5'–ATLCAGLGCGLCAAL–3'  
 L3M13 =    5'–ATLCAGLCGGLCAALTC–3'  
 L3M15 =    5'–ATLCAGLCCCLCAALTCCLA–3'  
immobilized  LNA-DNA mixmer 1° targets iL3B9 =    5'–TTTTTTTTTTTATLCAGLCCGLC–3'  
 iL3M9 =    5'–TTTTTTTTTTTATLCACLCCGLC–3'  
soluble DNA 2° target B15 =       5'–ATCAGCCGCAATCCA–3'  
soluble LNA 2° target L3B15 =    5'–ATLCAGLCCGLCAALTCCLA–3'  

noncomplementary targets 
 
NC14 =     5'–GGATTGCGGCTGAT–3' 

 

 
NC12 =     5′-TAGTCGGCGTTA- 3′ 
 

 

   
   

 

 

aSuperscript “3” in sequence nomenclature indicates LNA present at every third residue. Superscript “L” after base in 
a sequence indicates a LNA residue. Underlined base indicates a mismatch. 
 
 
 

Table 2.   List of Salmonella-based dsProbe and target sequences used in flow cytometry studies between the 
immobilized strands (3P or 5P) and either the reporter or target strands. The immobilized sequence of each dsProbe 
contains an amine group on either the 3´ (3P) or 5´ (5P) end. The reporter sequence of each dsProbe is labeled with a 
fluorescein derivative (FAM) or (T Fluor) on either the 3´ (T13) or 5´ (T15m) end. Underlined base indicates a 
mismatch between the immobilized strand and either the reporter strand or the target strand. Red lettering indicates 
the single-stranded toehold segment present in 3P:T13 dsProbes.  
 

Nomenclature Sequence 

 
3P:T13 

 
 

5P:T15m 
 

         
          3' - Amine-TTT TTT ACT ATC ACA CTG CTC - 5' 

                     5' - TGA TAG TGT GAC G (FAM)- 3' 
 

         5' - Amine-(12 carbon) CTC GTC ACA CTA TCA - 3' 
                                        3' - GAG CAG TCT GAT AGT (T Fluor)- 5' 
 

Nomenclature Sequence 

 
T15 

T15m 
T15x3 
R15 

 
3' - GAG CAG TGT GAT AGT - 5' 
3' - GAG CAG TCT GAT AGT - 5' 
3' - GAC CAG TGT GAT AGT - 5' 
3' - GAG CAG UGU GAU AGU - 5' 

 

18



 

10

Table 3. List of double-stranded DNA probe (dsProbe) sequences used in flow cytometry studies. The top strand in 
each duplex is immobilized to a microsphere via the amine terminus. The notation “(T Fluor)” in each reporter strand 
corresponds to the fluorescein-modified thymine that is not intended to participate in hybridization. Single-stranded 
bases in dsProbes are highlighted in red and any center mismatches are underlined in the reporter strand.  
 

 
dsProbe 

Nomenclature 
 

 
Sequence 

 
P15:NC-18 

 
 

P15:T11 
 
 

P15:T13 
 
 

P15:T15 
 

 
P15:T11m 

 
 

P15:T13m 
 

 
P15:T15m 

 

 
   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 
                 3´ – (Fluor T)TT TTT TTT TTT TTT TTT – 5´ 
 
   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 

                            3´ – AG TGT GAT AGT (T Fluor) – 5´ 
 

   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 
                      3´ – G CAG TGT GAT AGT (T Fluor) – 5´ 

 
   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 

                3´ – GAG CAG TGT GAT AGT (T Fluor) – 5´ 
 

   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 
                            3´ – AG TGT CAT AGT (T Fluor) – 5´ 

 
   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 

                     3´ – G CAG TGA GAT AGT (T Fluor) – 5´ 
 

   5´ – Amine (12 carbon) CTC GTC ACA CTA TCA – 3´ 
                3´ – GAG CAG TCT GAT AGT (T Fluor) – 5´ 
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